Uso de cookies

En las páginas web de la Universidad Carlos III de Madrid utilizamos cookies propias y de terceros para mejorar nuestros servicios mediante el análisis de sus hábitos de navegación. Al continuar con la navegación, entendemos que se acepta nuestra política de cookies. "Normas de uso"

Cabecera de página Seminarios Master Ciencia y Tecnología Informatica

Learning Technologies for Robot Autonomy through Imitation and Reinforcement (Roberto Martin-Martin)

Título: Learning Technologies for Robot Autonomy through Imitation and Reinforcement

Ponente: Roberto Martin-Martin, University of Texas at Austin

Fecha: pendiente de confirmación (entre finales de marzo y finales de mayo de 2025)

Lugar: aula por definir

Organizador: Fernando Fernández

Idioma: Inglés

Resumen:
In this seminar, we will cover some of the fundamentals of machine learning applied to robotics including techniques such as Imitation Learning (supervised and self-supervised), Reinforcement Learning and the use of Foundation Models. We will have a brief overview of the basics of those techniques and a deep dive into their application in real-world robotic tasks. The seminar will also include some fundamentals of computer vision and their application to robotics and robot learning.

Breve biografía:
Roberto Martin-Martin is Assistant Professor of Computer Science at University of Texas at Austin. His research connects robotics, computer vision and machine learning. He studies and develops novel AI algorithms that enable robots to perform tasks in human uncontrolled environments such as homes and offices. In that endeavor, he creates novel decision-making solutions based on reinforcement learning, imitation learning, planning and control, and explores topics in robot-perception such as pose estimation and tracking, video prediction and parsing.
Martin-Martin received his Ph.D. from Berlin Institute of Technology (TUB) prior to a postdoctoral position at the Stanford Vision and Learning Lab under the supervision of Fei-Fei Li and Silvio Savarese. His work has been selected as RSS Best Systems Paper Award, RSS Pioneer, Winner of the Amazon Picking Challenge, and ICRA and IROS Best Paper Nominee. He is chair of the IEEE Technical Committee in Mobile Manipulation.

Introduction to SysML v2: foundations and applications (Ed Seidewitz)

Título: Introduction to SysML v2: foundations and applications

Ponente: Ed Seidewitz

Afiliación: Model Driven Solutions

Fecha: 5 al 7 de Mayo 2025 (pendiente de confirmación)

Lugar: aula por definir

Organizador: Ana Granados

Idioma: Inglés

Resumen:

This seminar provides a comprehensive introduction to Systems Modeling Language (SysML) version 2, focusing on its fundamental concepts and practical applications. Participants will gain an understanding of the core elements of SysML, including its syntax, semantics, and the improvements introduced in version 2.

The transformative role of generative AI systems: Redesigning tasks and reconfiguring skills (Giulio Jacucci)

Título: The transformative role of generative AI systems: Redesigning tasks and reconfiguring skills

Ponente: Giulio Jacucci, University of Helsinki

Fecha: semana del 3-7 Marzo 2025 (pendiente de confirmación)

Lugar: aula por definir

Organizador: Andrea Bellucci

Idioma: Inglés

Breve biografía: Giulio Jacucci