Uso de cookies

En las páginas web de la Universidad Carlos III de Madrid utilizamos cookies propias y de terceros para mejorar nuestros servicios mediante el análisis de sus hábitos de navegación. Al continuar con la navegación, entendemos que se acepta nuestra política de cookies. "Normas de uso"

R Basics for Social Sciences

R basics for social sciences

Eje formativo: Didáctica

Área formativa: Estrategias para el proceso de enseñanza-aprendizaje.

Modalidad: Presencial híbrido. Campus de Getafe

Ponente: Patrick Wili Kraft. Investigador Ramon y Cajal

Destinatarios: Todo el Personal Docente e Investigador de la Universidad. máximo 15 plazas.

Inscripción: del 25 de noviembre al 2 de diciembre inclusive.

Sistema de evaluación y certificado: Mínimo de asistencia del 80% para obtener el certificado.

  • Contenidos

    • Session 1 (17/1/2024): Introduction to base R & RStudio
    • Session 2 (31/1/2024): Data Visualization using ggplot2 (1)
    • Session 3 (14/2/2024): Data Visualization using ggplot2 (2)
    • Session 4 (28/2/2024): Data Manipulation using dplyr (1)
    • Session 5 (13/3/2024): Data Manipulation using dplyr (2)
    • Session 6 (10/4/2024): Cleaning messy data with tidyr
    • Session 7 (24/4/2024): Working with (generalized) linear models in R
    • Session 8 (8/5/2024): Creating regression tables for latex, markdown, and word
    • Session 9 (22/5/2024): Simulating & visualizing quantities of interest (1)
    • Session 10 (5/6/2024): Simulating & visualizing quantities of interest (2)

  • Objetivos

    An introduction to R course typically aims to provide students with a solid foundation in the R programming language and its applications in data analysis and statistics. This course is intended to help faculty in the Social Sciences Department to learn the R language to be able to teach their courses using this software. The main objectives of such a course nclude:

    • Familiarity with R Environment: Help students become comfortable with the R programming environment, including the R console and RStudio.
    • Basic Syntax: Teach the fundamental syntax and data structures in R, such as vectors, data frames, and lists.
    • Data Import and Export: Instruct students on how to import data from various file formats (e.g., CSV, Excel, and text) and export results.
    • Data Manipulation: Cover data manipulation techniques, including subsetting, filtering, merging, and reshaping data.
    • Statistical Analysis: Introduce basic statistical concepts and demonstrate how to perform common statistical tests and analyses using R.
    • Data Visualization: Teach students how to create informative and visually appealing data visualizations using R packages like ggplot2.
    • R Packages: Familiarize students with the concept of packages and how to install and use them to extend R's capabilities for specific tasks.
    • Reproducible Research: Emphasize the importance of writing well-documented and reproducible R scripts and reports using tools like R Markdown.
    • Basic Programming Concepts: Introduce students to programming concepts in R, such as loops, conditional statements, and functions.
    • In-Class Applications: Provide practical examples and possible exercises to do in class with their students and how to solve them.

    These objectives are designed to give the faculty a solid foundation in R that allows them to teach basic statistics, either descriptive or inferential, and incentivize them to apply this language in their research activities.

  • Duración

    20 horas.

  • Calendario y Horario

    Fechas: 22, 29 enero 5, 12, 19, 26 febrero 5, 12, 19, 26 de marzo 2025

    Horario: de 10.30h a 12.30h